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Introduction

Introduction

Overview

The first part of this lecture presents network ensembling, called nagging.
The second part of this lecture present negative sampling which is useful
for an unsupervised embedding of text and words.

This lecture covers Chapters 5 and 8 of Wüthrich et al. (2025).
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Network ensembling

Network ensembling

A critical point of network fitting is that it involves several elements of
randomness. Even for a fixed architecture and fitting procedure, one
typically has infinitely many equally good fitted models (‘solutions’).

The elements of randomness involve:
(1) the initialization of the network weight ϑ[0] for SGD;
(2) the random partition into learning sample L and test sample T ;
(3) the random partition into training sample U and validation sample V;

(4) the random partition into the batches (Uk)⌊n/s⌋
k=1 .

(5) There are further random items like drop-outs, etc.

This makes early stopped SGD solutions (highly) non-unique. This
non-uniqueness is typical for machine learning solutions.
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Network ensembling

Ensembling/nagging

Breiman (1996) introduced bagging for regression trees.

Bagging combines bootstrap and aggregating. Bootstrap is a
re-sampling technique, and this is combined with aggregation which
has an averaging effect, reducing the randomness.

We replace the bootstrap by different SGD ‘solutions’, because network
fitting has the above mentioned items of randomness, we naturally
receive multiple solutions.

Ensembling of network predictors was introduced by Dietterich (2000a)
and Dietterich (2000b). Subsequently, it was studied in Richman and
Wüthrich (2020), where it was called nagging for network aggregating.
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Network ensembling

Ensemble predictor

Having multiple (conditionally) i.i.d. predictors (µ̂j)M
j=1, one builds the

ensemble predictor

µ̂(M) = 1
M

M∑
j=1

µ̂j .

This ensemble predictor has an estimation uncertainty√
Var

(
µ̂(M)) = 1√

M

√
Var(µ̂1) → 0 for M → ∞.

The important takeaway is that ensembling over conditionally i.i.d.
predictors substantially reduces estimation uncertainty.

Caveat: This does not say anything about a bias of the estimated
model for the true model!
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Network ensembling

Nagging predictor

Based on learning sample L = (Yi , X i , vi)n
i=1, choose M conditionally

i.i.d. fitted FNNs, where the conditionally i.i.d. applies to the elements
of randomness in SGD fitting.

This gives us M conditionally i.i.d. FNNs (µ
ϑ̂j

)M
j=1, given L.

This motivates the nagging predictor

µ̂nagg
M (X) = 1

M

M∑
j=1

µ
ϑ̂j

(X).

This ensembling reduces the fluctuations by a factor
√

M.

The next plot shows how many FNNs we need to ensemble to arrive at
an optimal forecast model.
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Network ensembling

Out-of-sample Poisson deviance losses as a function of M ≥ 1.

This is the French MTPL claims count example.

The Poisson deviance loss is scaled differently.

We conclude that we need roughly 10 to 20 i.i.d. fitted FNNs.
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Network ensembling

Results: nagging predictor

model in-sample loss out-of-sample loss balance (in %)

Poisson null model 47.722 47.967 7.36
Poisson GLM 45.585 45.435 7.36
Poisson FNN 44.846 44.925 7.17
nagging predictor 44.849 44.874 7.36

For the nagging predictor we use M = 10 individual network fits.

As expected, we receive an out-of-sample improvement.

Recommendation

In network predictions, always consider the nagging predictor µ̂nagg
M

with M ∈ {10, 20}. This will significantly improve the forecast model.
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Tokenization of text and words

Tokenization of text and words

When it comes to large unstructured text inputs, a word embedding
approach is fitted in an unsupervised learning manner (using the
context). We illustrate this.

For word embedding, we change the notation to w ∈ {1, . . . , W }
labeling all the words in the available vocabulary by integers.

We start from a sentence text of length T

text = (w1, . . . , wT ) ∈ NT .

The goal is to find a sensible word embedding (WE)

eWE : N → Rb, w 7→ eWE(w),

for embedding space Rb; Bengio, Courville and Vincent (2014).
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Tokenization of text and words

Based on unsupervised learning, one tries to learn embedding vectors
from the contexts:

E.g., ‘I’m driving by car to the city’ and ‘I’m driving my vehicle to the
town center’ uses similar words in a similar context.

Therefore, their embedding vectors should be close in the embedding
space Rb because they are almost interchangeable.

The goal is to learn such similarity in the meanings from the context.

There are two different approaches:
Predict a center word from its context; a popular method is continuous
bag-of-words (CBOW).

Predict the context from a center word; skip-gram is a popular approach.

For simplicity, we only present skip-gram. The other version is quite
similar; we refer to Wüthrich et al. (2025).
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Tokenization of text and words

Context of words

Consider a sentence

text = (w1, . . . , wt−1, wt , wt+1, . . . , wT ) ,

where the positional indices t ∈ N become important now.

Aim: Predict the context words (ws)s ̸=t knowing the center word wt .

Start from a collection of different sentences

C = {text = (w1, . . . , wT )} ,

to which positive probabilities are assigned

p(text) = p(w1, . . . , wT ) > 0.

These probabilities should reflect the frequencies of the sentences
text = (w1, . . . , wT ) in speech and texts.11/37



Tokenization of text and words

Applying Bayes’ rule, one determines how likely a certain context
occurs for a given center word wt

p (w1, . . . , wt−1, wt+1, . . . , wT | wt) = p(w1, . . . , wT )
p(wt)

.

In general, these probabilities are unknown, and they need to be
learned from a learning sample L.

Learning these probabilities will be based on embedding the words into
a low-dimensional embedding space; this is the step where the
adjacency of the word embedding is learned.
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Tokenization of text and words

word2vec: skip-gram approach

A popular approach is the word-to-vector (word2vec) skip-gram
approach of Mikolov, Chen, et al. (2013) and Mikolov, Sutskever, et al.
(2013).

Since this problem is too complex, one solves a simpler problem:
(1) First, one restricts to a fixed small context (window) size c ∈ N

p (wt−c , . . . , wt−1, wt+1, . . . , wt+c | wt) .

(2) Second, one assumes conditional independence of the context words,
given the center word wt .

Remark. Real texts do not satisfy this simplification, but this setup is
still sufficient to obtain reasonable word embeddings.
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Tokenization of text and words

Under the conditional independence assumption, we have log-likelihood
on the learning sample L and for given context size c ∈ N

ℓL =
n∑

i=1

∑
t

∑
−c≤j≤c, j ̸=0

log p (wi ,t+j | wi ,t) .

Maximize this log-likelihood ℓL in the conditional probabilities p(·|·) to
learn the most common context words of a given center word wt .

By embedding all words w , one can learn the embeddings
eWE(w) ∈ Rb by letting them enter the conditional probabilities p(·|·)
and maximizing the resulting log-likelihood.

There is one special point: one needs two different word embeddings
e(1)(w) ∈ Rb and e(2)(w) ∈ Rb for center and context words, as these
two play different roles in the conditional probabilities.
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Tokenization of text and words

Assume the conditional probabilities are modeled by the softmax
function

p (ws | wt) =
exp

〈
e(1)(wt), e(2)(ws)

〉
∑W

w=1 exp
〈
e(1)(wt), e(2)(w)

〉 ∈ (0, 1).

If the scalar/dot product between e(1)(wt) and e(2)(ws) is large, there
is a high probability that ws is in the context of the center word wt .

Collecting everything, one receives the log-likelihood function

ℓL =
n∑

i=1

∑
t

∑
−c≤j≤c, j ̸=0

log p (wi ,t+j | wi ,t) .

Maximizing this log-likelihood ℓL for the given learning sample L gives
us the two (different) word embeddings.

Optimization is done by variants of SGD.
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Tokenization of text and words

Negative sampling

The above word2vec skip-gram approach is computationally expensive.

Negative sampling turns the above unsupervised learning problem into
a supervised learning problem of a lower complexity; see Mikolov,
Sutskever, et al. (2013).

For this, we consider pairs (w , w̃) ∈ W × W of center words w and
context words w̃ . To each of these pairs we add a binary response
variable Y ∈ {0, 1}, resulting in observation (Y , w , w̃).

There will be two types of center-context pairs:
(1) real ones are from the learning sample L, and we set Y = 1, and
(2) fake ones that are generated purely randomly, and we set Y = 0.
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Tokenization of text and words

Construct these two types of pairs as follows:
(1) Extract all center-context pairs (w , w̃) from the learning sample L and

assign a response Y = 1 to these pairs, for indicating that these are true
pairs. This gives the first part of the learning data denoted by

L1 = (Yi = 1, wi , w̃i)n
i=1.

(2) Take all real pairs (wi , w̃i)n
i=1, and randomly permute the index of the

context word indicated by a permutation π. This gives a second (fake)
learning data set

L2 = (Yn+i = 0, wn+i , w̃n+π(i))n
i=1,

with Y = 0 as response.

Merging real and fake learning data gives us a learning sample
L = L1 ∪ L2 of sample size of 2n.
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Tokenization of text and words

This turns into the supervised logistic regression problem

ℓL =
2n∑

i=1
logP [Y = Yi | wi , w̃i ]

=
n∑

i=1
log

( 1
1 + exp⟨−e(1)(wi), e(2)(w̃i)⟩

)

+
2n∑

k=n+1
log

( 1
1 + exp⟨e(1)(wk), e(2)(w̃k)⟩

)
.

Maximizing this log-likelihood ℓL, one can learn the two embeddings
e(1) and e(2).

For SGD training to work properly in this negative sampling learning,
one should randomly permute the instances in L = L1 ∪ L2, to ensure
that all (mini-)batches contain instances of both types.
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Tokenization of text and words

Example: word2vec skip-gram with negative sampling

We give an example being based on the claims texts of Frees (2020).

# load necessary packages
library(tensorflow)
library(keras)
library(data.table)
library(plyr)
library(stringr)
library(textstem)
library(tm)
library(purrr)

# load data
load(file="../Data/data_text.rda")
set.seed(100)
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Tokenization of text and words

# remove stopwords, to lower case and remove white space at start and end
dat2 <- data_text %>% mutate(clean = Description %>%

removeWords(stopwords("en")) %>% str_to_lower() %>% str_squish())↪→

# remove numbers
dat2$clean <- str_squish(removeNumbers(dat2$clean))
# remove punctuation
dat2$clean <- str_squish(removePunctuation(dat2$clean,

preserve_intra_word_contractions = FALSE, preserve_intra_word_dashes =
TRUE ))

↪→

↪→

# remove damaged: because it occurs too frequently
dat2$clean <- str_squish(removeWords(dat2$clean, words=c("damage",

"damaged", "damge", "dmage", "dmgd", "damged", "dmaged", "damgae",
"damgae", "damaging")))

↪→

↪→

# lemmatize
dat2$clean <- lemmatize_strings(dat2$clean, dictionary =

lexicon::hash_lemmas)↪→
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Tokenization of text and words

# tokenize cleaned data
tokenizer1 = text_tokenizer() %>% fit_text_tokenizer(dat2$clean)
# count the number of used words
text.matrix <- texts_to_matrix(tokenizer1, dat2$clean, mode = "count")
length(colSums(text.matrix)[-1])

[1] 1819

words.used <- colSums(text.matrix)[-1]
# minimal occurrence for embedding
wwww <- 20
(words <- length(words.used[words.used>=wwww]))

[1] 126

Since this is a very small dataset, we only embed the most frequent words,
i.e., those that appear at least 20 times over all texts.
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Tokenization of text and words

# we only embed the words that occur at least 20 times
tokenizer2 <- text_tokenizer(num_words=words+1) %>%

fit_text_tokenizer(dat2$clean)↪→

# this gives smaller texts
text.matrix <- texts_to_matrix(tokenizer2, dat2$clean, mode = "count")
# words used
(max.words <- length(colSums(text.matrix)[-1]))

[1] 126

# maximal sentence lengths
(maxlen <- max(rowSums(text.matrix)))

[1] 7

# tokenized sentences
seqs <- texts_to_sequences(tokenizer2, dat2$clean)
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Tokenization of text and words

# true center-context pairs (we select a window size of 2)
jj0 <- 0
for (jj in 1:nrow(dat2)){

# only consider texts with more than one word
if (length(unlist(seqs[[jj]]))>1){
jj0 <- jj0 + 1
# generate the negative samples ourselves to control the seed
tt <- skipgrams(sequence=unlist(seqs[[jj]]),

vocabulary_size=words, window_size=2, negative_samples=0)
xx <- matrix(unlist(tt$couples), ncol=2, byrow=TRUE)
yy <- tt$labels
gram0 <- data.frame(cbind(xx,yy))
names(gram0) <- c("w1", "w2", "yy")
if (jj0==1){
gram <- gram0
}else{
gram <- rbind(gram, gram0)
}}}
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Tokenization of text and words

skipgram <- gram
# generate fake center-context pairs by permuting the context word w2
gram$yy <- 0
set.seed(100)
gram$w2 <- gram[sample(1:nrow(gram)),"w2"]
# merge the two samples and randomize the order
skipgram <- rbind(skipgram, gram)
skipgram <- skipgram[sample(1:nrow(skipgram)),]
skipgram[1:5,]

w1 w2 yy
3779 52 91 1
2931 96 45 1
22557 12 36 0
8282 34 77 1
78 3 52 1
24227 1 93 0
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Tokenization of text and words

network.word2vec <- function(seed, W1, b1){
tf$keras$backend$clear_session()
set.seed(seed)
set_random_seed(seed)
center <- layer_input(shape = c(1), dtype = 'int32')
context <- layer_input(shape = c(1), dtype = 'int32')
centerEmb = center %>%

layer_embedding(input_dim = W1, output_dim = b1, input_length = 1,
name = 'centerEmb') %>% layer_flatten()

contextEmb = context %>%
layer_embedding(input_dim = W1, output_dim = b1, input_length = 1,

name = 'contextEmb') %>% layer_flatten()
response = list(centerEmb, contextEmb) %>%

layer_dot(axes = 1) %>%
layer_dense(units=1, activation='sigmoid')

keras_model(inputs = c(center, context), outputs = c(response))
}
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Tokenization of text and words

# center-context pairs input data
center <- as.matrix(skipgram$w1-1)
context <- as.matrix(skipgram$w2-1)

# embedding dimension
b1 <- 2
model <- network.word2vec(seed=100, words, b1)
model %>% compile(loss = "binary_crossentropy", optimizer = "nadam")
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Tokenization of text and words

Model: "model"
________________________________________________________________________________
Layer (type) Output Shape Param Connected to

#
================================================================================
input_1 (InputLayer) [(None, 1)] 0 []
input_2 (InputLayer) [(None, 1)] 0 []
centerEmb (Embedding) (None, 1, 2) 252 ['input_1[0][0]']
contextEmb (Embedding (None, 1, 2) 252 ['input_2[0][0]']
)
flatten (Flatten) (None, 2) 0 ['centerEmb[0][0]']
flatten_1 (Flatten) (None, 2) 0 ['contextEmb[0][0]']
dot (Dot) (None, 1) 0 ['flatten[0][0]',

'flatten_1[0][0]']
dense (Dense) (None, 1) 2 ['dot[0][0]']

================================================================================
Total params: 506 (1.98 KB)
Trainable params: 506 (1.98 KB)
Non-trainable params: 0 (0.00 Byte)
________________________________________________________________________________
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Tokenization of text and words

fit <- model %>% fit(list(center, context), skipgram$yy,
validation_split=0.2, batch_size=5000, epochs=epochs,

verbose=0)↪→
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Tokenization of text and words

# function to extract the weights by layer name
get_embedding_values = function(layer_name){

embedding = model %>% get_layer(layer_name) %>% get_weights()
temp = embedding[[1]] %>% data.table()
temp %>% setnames(names(temp),paste0("dim",seq(1:length(names(temp)))))
temp}

# indices of hazards insured
hazard <- c(str_to_lower(sort(unique(dat2$Hazard))), "water")
index <- unlist(tokenizer2$word_index)[unlist(tokenizer2$index_word) %in%

hazard]↪→

index

# extract embedding of center words
variable <- "center"
embed_dims = get_embedding_values(paste(variable, "Emb", sep=""))

# we print the center word embeddings of the 50 most frequent words
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Tokenization of text and words

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

2−dimensional embedding of center word

dimension 1

di
m

en
si

on
 2

vandalismlightning

water

glasspark

fire

light

wind

door

es

pole

break

vehicle

power
theft

surge

signal

school

hit

build

ms

traffic

graffito

equipment

hydrant

garage

roof

window
dmg

laptop

airport

street

strike

fence

center

station

bldg

high

hail

radio

system
llm

storm
tower

steal

good west

run

shelter

hall
vandalismlightning

water

fire

wind

vehicle

hail

Red color shows the insured hazards. Naturally, we should select higher
embedding dimensions, but b = 2 can nicely be illustrated.30/37



Tokenization of text and words
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Tokenization of text and words

Conclusions word2vec

Naturally, one should select higher-dimensional embedding dimensions
than b = 2, and principal component analysis (PCA) can be used to
illustrate these embeddings.

Pre-trained embeddings can be downloaded, e.g., an embedding GloVe
is available for embedding dimensions 50, 100, 200, 300. This is
trained on large corpus of the internet; Pennington, Socher and
Manning (2014).

The difficulty with pre-trained embeddings is that they may be
pre-trained in a different context, e.g., ‘policy’ may have different
meanings in insurance and machine learning.
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Copyright

Copyright

© The Authors

This notebook and these slides are part of the project “AI Tools for
Actuaries”. The lecture notes can be downloaded from:

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5162304

This material is provided to reusers to distribute, remix, adapt, and
build upon the material in any medium or format for noncommercial
purposes only, and only so long as attribution and credit is given to the
original authors and source, and if you indicate if changes were made.
This aligns with the Creative Commons Attribution 4.0 International
License CC BY-NC.
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